81x^2+100x^2=8100

Simple and best practice solution for 81x^2+100x^2=8100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 81x^2+100x^2=8100 equation:



81x^2+100x^2=8100
We move all terms to the left:
81x^2+100x^2-(8100)=0
We add all the numbers together, and all the variables
181x^2-8100=0
a = 181; b = 0; c = -8100;
Δ = b2-4ac
Δ = 02-4·181·(-8100)
Δ = 5864400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5864400}=\sqrt{32400*181}=\sqrt{32400}*\sqrt{181}=180\sqrt{181}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-180\sqrt{181}}{2*181}=\frac{0-180\sqrt{181}}{362} =-\frac{180\sqrt{181}}{362} =-\frac{90\sqrt{181}}{181} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+180\sqrt{181}}{2*181}=\frac{0+180\sqrt{181}}{362} =\frac{180\sqrt{181}}{362} =\frac{90\sqrt{181}}{181} $

See similar equations:

| 2s=-4s+6 | | 2n+5=3(n-2) | | -7w=8-9w | | 6b=11b-10(40) | | g+6−3=31g= | | x+.42x=250000 | | x=((1028^32)^32)^128 | | 3x+x2=64 | | 9x-6=2x-12 | | 8x+6=4x+38=140 | | 10^4x=30 | | -12=4/5y | | 4(2x-5)=-18-2(1-4x) | | 7x+5=3x+115 | | (12y+5)−45=12y−1+110y1.15y+2−45=12y−1+110y2.15y+65=35y−13.65=25y−1/115=25y | | -2-7n+12n=-9n+20-18+14n | | n-17=132 | | 3n+11=92 | | 4n-3=117 | | 105=5x+6x+6 | | 2n-14=126 | | 4x^2-32x-72=0 | | 3n-35=130 | | 3y+92/5=28. | | s+2=3s | | 6(6x+10)=36x-2 | | 25+87f=547 | | 25f+87=547 | | 25f+87f=547f | | 1.5b+2.25=7/4 | | 18x+9=27/5+18 | | 1/9(2m-19)=1/3(2m+4) |

Equations solver categories